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Growth of Saccharomyces cerevisiae in poor nitrogen sources or 
exposure to the Tor inhibitor rapamycin results in expression of 
the nitrogen catabolite repressed (NCR) genes whose products are 
involved in scavenging and metabolizing nitrogen. The NCR genes 
are regulated by the GATA-like transactivators Gln3 and Gat1, 
which are thought to be under control of the rapamycin-sensitive 
Tor complex 1 (TORC1). We have recently shown that Gln3 
nuclear translocation in response to nitrogen source quality but not 
in response to rapamycin requires Golgi to endosome trafficking. 
These and previous findings that several TORC1 components 
localize to low density endomembranes are discussed in a model 
that underscores a prominent role for the vesicular trafficking 
system in facilitating molecular interactions in response to nitrogen 
source. In addition, these findings have important implications for 
Tor signaling and rapamycin mechanism of action, both in yeast 
and in metazoans.

In the yeast Saccharomyces cerevisiae the expression of genes 
required for uptake and metabolism of suboptimal nitrogen sources 
is regulated by the transactivators Gln3 and Gat1 and the repressor 
Ure2.1 Activity of these transactivators is in large part modulated 
by the nutrient-responsive and rapamycin-sensitive TORC1 and its 
downstream effector the Tap42-Sit4 protein phosphatase.2-6 It has 
been proposed that, during growth under optimal nitrogen condi-
tions (i.e., glutamine or ammonium), Tap42-Sit4 is anchored to 
light membranes via interaction with TORC1.7 Rapamycin exposure 
or complete nitrogen starvation results in Tap42-Sit4 release into 
the cytosol and Gln3 dephosphorylation, which in turn leads to 
Ure2-Gln3 complex dissociation and Gln3 nuclear translocation.7,8 
Intriguingly, this model does not operate for Gln3 activation in 

response to nitrogen source discrimination: transfer of cells from 
rich to poor nitrogen medium (proline) does not cause release of 
Tap42-Sit4 from membranes8 and although Gln3 translocates into 
the nucleus in a Sit4-dependent fashion, it is apparently not dephos-
phorylated.9,10 Importantly, it has been suggested that Tap42-Sit4 
activity is not influenced by the nitrogen source.10 Collectively 
these results argue that, under poor nitrogen conditions, Tap42-Sit4 
remains active and Gln3 is dephosphorylated at specific amino acid 
residues or to an extent not detectable by gel shift or, less likely, 
Tap42-Sit4 dephosphorylates another target that in turn regulates 
Gln3 activation.

The class C Vps protein complex mediates docking and membrane 
fusion of Golgi-derived vesicles at the endosome, and between 
endosomes and vacuoles, and thus, actively regulates protein and 
membrane traffic between these cellular compartments.11,12 The 
vacuole is a major amino acid reservoir and defects in class C VPS 
genes result in severely fragmented vacuoles, low amino acid levels, 
and defects in poor nitrogen source utilization and nitrogen starva-
tion survival.13-16 Importantly, class C Vps complex function is 
required to provide amino acid homeostasis for efficient TORC1 
signaling.15

Recently, we demonstrated that the inability of class C vps 
mutants to utilize poor nitrogen sources is attributable to marked 
defects in Gln3 nuclear translocation and NCR gene expression.16 
Similar defects were also observed in class D vps mutants, which 
are impaired in Golgi to endosome transport, but not in mutants 
affected in other protein trafficking steps. Strikingly, Gln3 nuclear 
translocation elicited by rapamycin was independent of class C and 
D Vps function. A closer examination of Gln3 cytoplasmic distribu-
tion in wild-type cells revealed a significant fraction of Gln3 and 
Ure2 peripherally associated with low-density membranes and Gln3 
colocalized with Golgi and endosomal markers. Other poor nitrogen 
source-induced TORC1 readouts including repression of ribosomal 
protein and induction of STRE genes, known to be regulated via 
Sch9 independently of Tap42-Sit4, were not altered by class C and D 
vps mutations.16,17 These findings indicate that Golgi to endosome 
trafficking is crucial for Gln3 nitrogen source regulation and have 
important implications for understanding TORC1 signaling and 
rapamycin mechanisms of action.

Our studies support a model in which, under poor nitrogen 
source conditions, Gln3-Ure2 associated with Golgi-derived vesicles 
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is transported to endosomes or a later compartment where activated 
Tap42-Sit4 complexes normally reside and act to dephosphorylate 
Gln3 (Fig. 1A). In this model rapamycin-induced membrane libera-
tion of Tap42-Sit4 complexes bypasses the requirement of Gln3-Ure2 
to undergo Golgi to endosome transport for activation (Fig. 1B). 
Experimental avenues to test this model include: (1) examine if Ure2 
colocalizes with Gln3 along with Golgi and endosomal markers, (2) 
identification of the light membranes on which Tap42-Sit4 resides 
in association with TORC1, (3) determine whether membrane 
TORC1-associated Tap42-Sit4 complexes are active, and (4) examine 
if other TORC1-Tap42 targets require Golgi to endosome transport 
for regulation. Further examination of this model is likely to reveal 
insights into the mechanisms of Tor signaling and rapamycin action, 
which presently are not well understood.

In summary these studies reveal an unanticipated role for the 
vesicle-endosomal trafficking system in facilitating molecular inter-
actions for TORC1-regulated signal transduction events in response 
to nutritional cues. This model is well supported by studies demon-
strating that TORC1 components are localized to endosomal and 
prevacuolar compartments (reviewed in ref. 18). Thus, TORC1 joins 
an emerging number of pathways that employ the vesicle-endosomal 
system as a staging platform for signaling.19 These findings also 
reveal further insight into TORC1 signaling and rapamycin action 
and suggest analogous mechanisms might operate in more complex 
eukaryotic organisms, including humans, in which Vps proteins and 
TORC1 orthologs are conserved.
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